- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Ye, Jiandong (3)
-
Zhang, Yuhao (2)
-
Chen, Xiaofeng (1)
-
Gong, Hehe (1)
-
Gu, Shulin (1)
-
Gu, Songhao (1)
-
Guo, Binggege (1)
-
Jia, Xiaoting (1)
-
Li, Xian (1)
-
Li, Yuli (1)
-
Liang, Qiming (1)
-
Liu, Zesen (1)
-
Lu, Hai (1)
-
Pei, Xinyi (1)
-
Qin, Yuan (1)
-
Ren, Fang-Fang (1)
-
Sasaki, Kohei (1)
-
Sun, Na (1)
-
Wang, Shiren (1)
-
Wang, Xinran (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Benefitted from progress on the large-diameter Ga 2 O 3 wafers and Ga 2 O 3 processing techniques, the Ga 2 O 3 power device technology has witnessed fast advances toward power electronics applications. Recently, reports on large-area (ampere-class) Ga 2 O 3 power devices have emerged globally, and the scope of these works have gone well beyond the bare-die device demonstration into the device packaging, circuit testing, and ruggedness evaluation. These results have placed Ga 2 O 3 in a unique position as the only ultra-wide bandgap semiconductor reaching these indispensable milestones for power device development. This paper presents a timely review on the state-of-the-art of the ampere-class Ga 2 O 3 power devices (current up to >100 A and voltage up to >2000 V), including their static electrical performance, switching characteristics, packaging and thermal management, and the overcurrent/overvoltage ruggedness and reliability. Exciting research opportunities and critical technological gaps are also discussed.more » « less
-
Pei, Xinyi; Gong, Hehe; Sun, Na; Gu, Songhao; Zhang, Jianhong; Liu, Zesen; Ren, Fang-Fang; Guo, Binggege; Yan, Dawei; Lu, Hai; et al (, IEEE)Free, publicly-accessible full text available December 7, 2025
-
Li, Xian; Liang, Qiming; Zhang, Wen; Li, Yuli; Ye, Jiandong; Zhao, Fujian; Chen, Xiaofeng; Wang, Shiren (, Journal of Materials Chemistry B)Bio-inspired pinecone-like bioactive glasses consisting of ordered thin-layers separated by consistent cavities were synthesized using a sol–gel process. The short diameter of the as-produced particles was as short as 161 nm, and the surface area was as high as 280 m 2 g −1 . The pore volume, ranging from ∼0.74 cm 3 g −1 to ∼0.67 cm 3 g −1 , could be modulated by the aqueous ammonia concentration. The surface was further tailored for positive charges by amino grafting. The as-produced nanoparticles could successfully enter cells via endocytosis. The microRNA delivery of the bioactive glass particles was further investigated by fluorescence microscopy and flow cytometry, indicating a loading efficiency and transfection efficiency greater than 90%. The potential of such particles as drug carriers was also studied. CCK8, live–dead cell staining and PI/annexinV double staining analyses confirmed that the bioactive glass particles loaded with antitumour doxorubicin (DOX) significantly accelerated the apoptosis of tumour cells. These bio-inspired bioactive glasses are promising as novel vectors for drug and microRNA delivery with high efficiency.more » « less
An official website of the United States government
